Fractional Laplacian with Hardy potential

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An overdetermined problem in Riesz-potential and fractional Laplacian

The main purpose of this paper is to address two open questions raised by Reichel (2009) in [2] on characterizations of balls in terms of the Riesz potential and fractional Laplacian. For a bounded C1 domainΩ ⊂ RN , we consider the Riesz-potential u(x) = ∫ Ω 1 | x− y |N−α dy for 2 ≤ α = N . We show that u = constant on ∂Ω if and only if Ω is a ball. In the case of α = N , the similar characteri...

متن کامل

Inverse nodal problem for p-Laplacian with two potential functions

In this study, inverse nodal problem is solved for the p-Laplacian operator with two potential functions. We present some asymptotic formulas which have been proved in [17,18] for the eigenvalues, nodal points and nodal lengths, provided that a potential function is unknown. Then, using the nodal points we reconstruct the potential function and its derivatives. We also introduce a solution of i...

متن کامل

Nonlinear Diffusion with Fractional Laplacian Operators

We describe two models of flow in porous media including nonlocal (longrange) diffusion effects. The first model is based on Darcy’s law and the pressure is related to the density by an inverse fractional Laplacian operator. We prove existence of solutions that propagate with finite speed. The model has the very interesting property that mass preserving self-similar solutions can be found by so...

متن کامل

Fractional Laplacian in bounded domains.

The fractional Laplacian operator -(-delta)(alpha/2) appears in a wide class of physical systems, including Lévy flights and stochastic interfaces. In this paper, we provide a discretized version of this operator which is well suited to deal with boundary conditions on a finite interval. The implementation of boundary conditions is justified by appealing to two physical models, namely, hopping ...

متن کامل

Fractional Laplacian in conformal geometry

In this note, we study the connection between the fractional Laplacian operator that appeared in the recent work of Caffarelli and Silvestre and a class of conformally covariant operators in conformal geometry. © 2010 Elsevier Inc. All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Partial Differential Equations

سال: 2019

ISSN: 0360-5302,1532-4133

DOI: 10.1080/03605302.2018.1539102